BNC-PSO: structure learning of Bayesian networks by Particle Swarm Optimization
نویسندگان
چکیده
Structure learning is a very important problem in the field of Bayesian networks (BNs). It is also an active research area for more than two decades; therefore, many approaches have been proposed in order to find an optimal structure based on training samples. In this paper, a Particle Swarm Optimization (PSO)-based algorithm is proposed to solve the BN structure learning problem; named BNC-PSO (Bayesian Network Construction algorithm using PSO). Edge inserting/deleting is employed in the algorithm to make the particles have the ability to achieve the optimal solution, while a cycle removing procedure is used to prevent the generation of invalid solutions. Then, the theorem of Markov chain is used to prove the global convergence of our proposed algorithm. Finally, some experiments are designed to evaluate the performance of the proposed PSO-based algorithm. Experimental results indicate that BNC-PSO is worthy of being studied in the field of BNs construction. Meanwhile, it can significantly increase nearly 15% in the scoring metric values, comparing with other optimization-based algorithms. BNC‐PSO: Structure Learning of Bayesian Networks by Particle Swarm Optimization S. Gheisari M.R. Meybodi Department of Computer, Science and Research Branch, Islamic Azad University, Tehran, Iran. Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran. [email protected] [email protected] Abstract Structure learning is a very important problem in the field of Bayesian networks (BNs). It is also an active research area for more than two decades; therefore, many approaches have been proposed in order to find an optimal structure based on training samples. In this paper, a Particle Swarm Optimization (PSO)-based algorithm is proposed to solve the BN structure learning problem; named BNC-PSO (Bayesian Network Construction algorithm using PSO). Edge inserting/deleting is employed in the algorithm to make the particles have the ability to achieve the optimal solution, while a cycle removing procedure is used to prevent the generation of invalid solutions. Then, the theorem of Markov chain is used to prove the global convergence of our proposed algorithm. Finally, some experiments are designed to evaluate the performance of the proposed PSO-based algorithm. Experimental results indicate that BNC-PSO is worthy of being studied in the field of BNs construction. Meanwhile, it can significantly increase nearly 15% in the scoring metric values, comparing with other optimization-based algorithms.
منابع مشابه
A Hybrid Optimization Algorithm for Bayesian Network Structure Learning Based on Database
The process of learning Bayesian networks includes structure learning and parameters learning. During the process, learning the structure of Bayesian networks based on a large database is a NP hard problem. The paper presents a new hybrid algorithm by integrating the algorithms of MMPC (max-min parents and children), PSO (particle swarm optimization) and GA (genetic algorithm) effectively. In t...
متن کاملEnhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملA Particle Swarm Optimization and Immune Theory-Based Algorithm for Structure Learning of Bayesian Networks
Bayesian network is a directed acyclic graph. Existing Bayesian network learning approaches based on search & scoring usually work with a heuristic search for finding the highest scoring structure. This paper describes a new data mining algorithm to learn Bayesian networks structures based on an immune binary particle swarm optimization (IBPSO) method and the Minimum Description Length (MDL) pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 348 شماره
صفحات -
تاریخ انتشار 2016